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Impact of a drop onto a wetted wall: description
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The impact of a drop onto a liquid film with a relatively high impact velocity, leading
to the formation of a crown-like ejection, is studied theoretically. The motion of a
kinematic discontinuity in the liquid film on the wall due to the drop impact, the
formation of the upward jet at this kinematic discontinuity and its elevation are
analysed. Four main regions of the drop and film are considered: the perturbed liquid
film on the wall inside the crown, the unperturbed liquid film on the wall outside
the crown, the upward jet forming a crown, and the free rim bounding this jet. The
theory of Yarin & Weiss (1995) for the propagation of the kinematic discontinuity is
generalized here for the case of arbitrary velocity vectors in the inner and outer liquid
films on the wall. Next, the mass, momentum balance and Bernoulli equations at the
base of the crown are considered in order to obtain the velocity and the thickness
of the jet on the wall. Furthermore, the dynamic equations of motion of the crown
are developed in the Lagrangian form. An analytical solution for the crown shape is
obtained in the asymptotic case of such high impact velocities that the surface tension
and the viscosity effects can be neglected in comparison to inertial effects. The edge
of the crown is described by the motion of a rim, formed due to the surface tension.

Three different cases of impact are considered: normal axisymmetric impact of a
single drop, oblique impact of a single drop, and impact and interaction of two drops.
The theoretical predictions of the height of the crown in the axisymmetric case are
compared with experiments. The agreement is quite good in spite of the fact that no
adjustable parameters are used.

1. Introduction
The recent progress in the field of drop and spray impact on a wetted wall can be

attributed to rapid development of experimental techniques, allowing one to obtain
high-quality images of impacting drops and to collect detailed information about the
splashing threshold (Walzel 1980; Mundo, Sommerfeld & Tropea 1994; Wang & Chen
2000), drop shape, crown propagation, fingering of the rim, etc. (Levin & Hobbs 1971;
Macklin & Metaxas 1976; Cossali, Coghe & Marengo 1997; Cossali et al. 1999), as
well as to measure distributions of the secondary drops in the impinging spray using
the phase Doppler technique (Mundo, Sommerfeld & Tropea 1998; Roisman et al.
1999) or using a photocamera (Shin & McMahon 1990). Several reviews (Rein 1993;
Prosperetti & Oguz 1993) can be recommended for further details of the phenomena.

Detailed data, including the velocity field in the drop and film, can also be obtained
using a direct numerical simulation of the drop impact (Harlow & Shannon 1967;
Schelkle et al. 1999; Weiss & Yarin 1999) or even of multiple drop impacts (Böhm,
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Weiss & Tropea 1999). These data can be especially important at the initial stages
of the drop impact, at times of order of t1 = D0/U0, when the geometry of the
droplet is complicated and the theoretical analysis of the problem provides only
order of magnitude values and not exact solutions. Here D0 and U0 are the initial
droplet diameter and impact velocity, respectively. However, experiments show that
the duration of the crown evolution is usually much larger than t1. Moreover, at large
times after the impact, the radius of the crown is much larger than the thickness of
the crown or the thickness of the film on the wall. Therefore, the computations of
the drop impact require a fine mesh and a large computation domain and are very
time consuming. On the other hand, the small thickness of the crown and the film on
the wall at large times, t � t1, makes the phenomena very attractive for theoretical
modelling. This modelling is possible as a remote asymptote at distances much larger
than D0.

In the theoretical work of Yarin & Weiss (1995) the impact of a drop onto a liquid
film is considered. The crown-like jet formed by the impact is described in their work
as a kinematic discontinuity of the liquid film. The velocity fields in the liquid film
on the wall and the expansion of the base of the crown in the axisymmetric case of a
normal drop impact were expressed analytically. Following their theory, the base of
the crown can be considered as a kinematic discontinuity of radius RB , subdividing
the liquid film on the wall into two parts: an outer unperturbed film of constant film
thickness hf and radial velocity Vf = 0; and an inner part of thickness hl and radial
velocity Vl , where at large times

V l(r̄, t̄) =
r̄

t̄+ τ̄
, h̄l(r̄, t̄) =

η̄

(̄t+ τ̄)2
, RB (̄t) = β̄ (̄t+ τ̄)1/2. (1.1 a–c)

Here the overbar denotes a dimensionless value with the drop initial diameter D0 used
as a length scale and its impact velocity U0 as a velocity scale. The radial coordinate
is denoted r, and the time since initial impact is denoted t. Parameters β̄, τ̄ and η̄
are dimensionless constants depending on the parameters of the impact: Reynolds
number, Weber number and the dimensionless initial film thickness h̄f . Equation
(1.1) satisfies the mass and momentum balance in the film on the wall and the jump
conditions at the kinematic discontinuity.

The expression (1.1c) for the radius of the base of the crown agrees well with
the experimental data of Yarin & Weiss (1995) and Cossali et al. (1999). Moreover,
the predictions of this radius by (1.1c) describe very accurately the results obtained
by Rieber & Frohn (1999) using the three-dimensional volume-of-fluid numerical
method of solution of the Navier–Stokes equations.

In the recent work of Trujillo & Lee (2001) the theory of Yarin & Weiss (1995)
for the propagation of the kinematic discontinuity is generalized to take into account
the effect of the viscous forces. The model improves the results of prediction of the
propagation of the radius of the crown. However, the differences with the theory of
Yarin & Weiss are not large. This indicates that in the case of high impact velocities
the main influencing factor on the formation of the crown is the inertia of the liquid.

In the study of polydisperse spray impingement (Tropea & Roisman 2000) it has
been shown that the resulting flux of splashed droplets is not a simple superposition
of single-drop impact events arising from the primary droplets of the impacting spray.
One of the reasons for this is the interaction of neighbouring crowns. Such a situation
is shown in figure 1. In this image, taken using a high-speed camera, the impact of a
polydisperse water spray onto the north pole of a steel spherical target is shown. Two
neighbouring splashing crowns can be clearly seen, as well as a drop impacting in



Impact of a drop onto a wetted wall 375

Impacting drop

Crowns

1 mm

Figure 1. Crowns formed due to polydisperse spray impact onto a rigid wall and their
interactions. Image taken using a high-speed camera.

the same region. The parameter characterizing the probability of crown interactions
at the wall depends on the number flux of the impacting drops, the rate of change
of the crown diameter and the total time of the crown propagation. This lifetime
of the crown is determined by the motion of the rim: its initial elevation and its
descent due to surface tension and gravity. The instant when the rim falls onto the
wall corresponds to the total time of the crown propagation, and is one of the key
parameters for modelling a dense polydisperese spray impact.

The main subject of the present work is the description of the expansion of a crown
ejected from the wetted wall due to impact of a liquid drop. The impacting drop and
the crown are shown schematically in figure 2. Four main regions are considered: the
liquid film on the wall inside the crown (region 1 in figure 2), the undisturbed film on
the wall outside the crown (region 2), the jet (region 3), and the free rim bounding
the crown from above (region 4).

The crown is ejected from the boundary between regions 1 and 2, a kinematic
discontinuity, where the film thickness and the velocity of the liquid both jump.
The radius vectors XB , X J and XR (see figure 2) correspond to the front of the
kinematic discontinuity, to the wall of the crown and to the centreline of the free rim,
respectively.

The crown is formed due to impact with a relatively high initial drop velocity U0.
Thus, in these cases, the Reynolds number Re = U0D0/ν and the Weber number We =
ρD0U

2
0/σ are much larger than unity; ν, ρ and σ are the constant kinematic viscosity,

density, and surface tension of the liquid respectively. Moreover, the Reynolds number
Reh = U0hf/ν based on the thickness hf of the undisturbed film is also assumed to
be large. Therefore, the phenomenon of the crown formation and propagation is
assumed to be inertia dominated and viscosity effects are neglected in the present
analysis.

Note however, that even at these high values of We, Re and Reh the velocity
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Figure 2. Sketch of the crown produced by the drop impact and of the regions considered
analytically.

gradients in the drop at the initial stage of the impact can be so high that the effect
of viscosity cannot be neglected there. The effect of the viscosity becomes apparent
in the viscous boundary layer near the wall. The velocity of the liquid outside the
boundary layer is of order of the initial drop velocity U0. The velocity field u near the
wall can be estimated using the velocity distribution in the unsteady boundary layer
corresponding to Stokes’ first (or Rayleigh’s) problem:

u = U0 erf

(
z

2
√
νt

)
,

where erf(·) is the error function and z is the coordinate normal to the wall. The
shear stress at the wall can be thus estimated as τw = U0ρ

√
ν/
√
πt. The effect of the

viscosity can be neglected when the inertial terms in the momentum of the liquid are
much larger than the viscous drag forces (ρhfU

2
0 � D0τw). The last condition can be

rewritten in the form

t� tν =
νD2

0

πh2
fU

2
0

.

It is convenient to write the above expression for the time tν in the non-dimensional
form

t̄ν =
1

π h̄2
fRe

, (1.2)

where the initial drop diameter D0 is used as a length scale, and the parameter D0/U0

as a time scale; the variables with an overbar are dimensionless.
The proposed theory is valid when the time tν is smaller than the time of the initial

drop deformation, which is of order of D0/U0, or in non-dimensional form if t̄ν < 1.
In § 2 the theory of Yarin & Weiss (1995) for the dynamics of the liquid film on

the wall and the propagation of the kinematic discontinuity is generalized to the
arbitrary non-axisymmetric case. Next, the equations of motion of the crown and rim
are formulated. Also, an analytic expression for the shape of the crown is obtained
for the case when the viscosity and surface tension are negligibly small. The theory is
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applied to the cases of the normal impact of a single drop in § 3, and oblique impact
of a single drop and the interaction of two crowns in § 4. The results are discussed in
§ 5, and conclusions are presented in § 6.

2. Formation and propagation of the upward jet: equations of motion for
the arbitrary case

The solution of the problem of the jetting due to drop impact can be subdivided
into five main parts. First, is the dynamics of motion of the liquid film on the wall. At
the interface between different regions in the wall film the velocity gradients are very
high. This interface is modelled in the present paper as a kinematic discontinuity.
This kinematic discontinuity, where the velocity vector and the thickness of the film
jump, is considered as a distributed volume sink Q. The second part of the solution
is the consideration of the jump conditions for the velocity and the thickness of the
film at the kinematic discontinuity and the derivation of the equations governing its
propagation.

Next, when the local value of the volume sink Q is positive, a liquid film is ejected
from the kinematic discontinuity. In this case the kinematic discontinuity is the base
of the crown. The third part of the solution is the determination of the velocity and
the thickness of this ejected film at the base of the crown. These values, as well as
the location of the base of the crown are used as initial conditions to the equations
of motion of the crown. Thus, the fourth part of the problem is the derivation of
equations of motion of the upward jet.

The free upward jet is always bounded by a rim formed at its edge due to the surface
tension. The description of the propagation of the rim is the fifth and conclusive part
of the problem.

The general solution of the problem is given below. As was noted in § 1, the cases
considered in the present work correspond to high Reynolds numbers and viscosity
effects are neglected. The liquid is assumed to be incompressible.

2.1. Dynamics of the liquid film on a plane rigid wall

In the present section the quasi-one-dimensional theory of Yarin & Weiss (1995) is
generalized to the case of a two-dimensional plane film. We consider the flow in a thin
liquid film on a wall. The effects of the velocity component normal to the wall and of
gravity are neglected. Following the simplified quasi-two-dimensional approach, the
continuity equation of the film is

∂h

∂t
+ ∇ · (hV ) = 0, (2.1)

where h is the film thickness, t is the time, ∇ is the two-dimensional gradient operator
in the plane parallel to the wall, and V is the average velocity vector over the film
thickness and parallel to the wall.

The momentum equation of the film represents the balance between the inertial
forces and surface tension. The effect of surface tension includes two forces. The first
of these is the pressure distribution in the film. The inertial effects in the direction
normal to the wall are negligibly small, and the average pressure over the film
thickness is approximated by the local capillary pressure pσ given as

pσ = σκ, (2.2)



378 I. V. Roisman and C. Tropeal

where σ is the surface tension and κ is the local curvature of the free surface of the
film.

The second force is the surface tension force applied to the free surface of the film,
z = h, and directed tangentially to this surface. However, the free surface (of zero
mass) can be excluded from the momentum balance of the film and the second force
can be substituted by the distribution of the capillary pressure −pσn over the surface
z = h (n being the local unit normal vector).

The projection of the surface tension forces on the plane of the wall yields the
following momentum equation:

ρ

[
∂hV

∂t
+ ∇ · (hV ⊗ V )

]
= −∇(hpσ) + pσ∇h, (2.3)

where ⊗ denotes the tensor product. Note that equation (2.3), written for the planar
or axisymmetric cases, is identical to the corresponding momentum equations given
in Yarin & Weiss (1995).

Equation (2.3), using (2.1), can be reduced to the following form:

ρ

[
∂V

∂t
+ (V · ∇)V

]
= −∇pσ. (2.4)

It can be shown that in cases when |∇h| � 1 equations (2.4) and (2.2) can be
linearized and written in dimensionless form as[

∂V

∂t̄
+ (V · ∇)V

]
=

1

We
∇(∇2

h̄), (2.5)

where the initial normal drop velocity, U0, is used as a velocity scale, its initial
diameter, D0, is used as a length scale, and ∇2 is the Laplace operator in two
dimensions in the plane parallel to the wall.

The Weber number in the cases corresponding to the crown formation and splash
is much larger than unity (We� 1). Therefore in a first-order approximation the
capillary effects in the momentum equation, the right-hand side of (2.5), vanish and
(2.4) takes the form

DV

Dt
= 0, (2.6)

where D/Dt denotes the material time derivative.
The solution of (2.6) in parametric form is therefore,

V = F (ζ), x = F (ζ) t+ ζ, (2.7a, b)

where x is the radius vector, and F is the initial value of the velocity vector V at the
radius vector ζ.

The continuity equation (2.1) can be rewritten in the more convenient form

Dh

Dt
= −h (∇ · V ). (2.8)

The solution of (2.8), using (2.7), yields the following expression for the thickness of
the film:

h(ζ) =
h0(ζ)

1 + (∇ζ · F ) t+ det(∇ζF ) t2
, (2.9)

where ∇ζ = ∂/∂ζ denotes the gradient operator at the initial instant of time in the
field with the radius vector defined by ζ, and ∇ζ ·F is correspondingly the divergence



Impact of a drop onto a wetted wall 379

of the vector F ; h0 is the initial distribution of the thickness. If in some ζ-region
det(∇ζF ) is negative, the denominator on the right-hand side of (2.9) can vanish at
some positive time instant t and, as noted in Yarin & Weiss (1995) and Whitham
(1974), the solution produces a kinematic discontinuity. This kinematic discontinuity
will be analysed in the next section.

It can also be shown that the expressions (1.1a, b) for the velocity and thickness of
the film produced by a normal drop impact is a particular case of the solution (2.7)
and (2.9) with

x̄ = r̄ er, ζ̄ = ζ̄ er F =
ζ̄

τ̄
er h̄0 =

η̄

τ̄2
.

2.2. Propagation of the kinematic discontinuity on the wall

Consider the liquid film on the wall surface, particularly regions 1 and 2 in figure 2.
At the interface XB between these two regions the thickness of the film jumps from
h1 to h2 and the velocity from V 1 to V 2. This interface, which is the base of the
upward jet (region 3 on figure 2) is treated in the theory of Yarin & Weiss (1995) as a
kinematic discontinuity. The thickness and the height of this kinematic discontinuity
is of order of the film thicknesses h1 and h2, and the rate of change of the mass of the
discontinuity and the inertial effects associated with the acceleration of the kinematic
discontinuity are neglected.

Denote by U the magnitude of the velocity of the discontinuity normal to its front.
In the plane parallel to the wall consider a Cartesian coordinate system with the base
unit vectors {en, eτ} normal and tangent to the discontinuity front. The mass balance
and the momentum equation of the kinematic discontinuity in the plane parallel to
the wall can be written in the form

h1(V 1 −Uen) · en − h2(V 2 −Uen) · en = Q, (2.10a)

h1[(V 1 −Uen) · en](V 1 −Uen)
−h2[(V 2 −Uen) · en](V 2 −Uen) = Q(V d −Uen), (2.10b)

where V d is the velocity of the liquid at the discontinuity front and Q is the specific
volume flux into the discontinuity (also called the sink strength at the discontinuity in
Yarin & Weiss (1995)). If the viscous forces are negligibly small in comparison with
the inertial forces, this velocity is equal to the centre-of-mass velocity

V d =
V 1 h1 + V 2h2

h1 + h2

. (2.11)

From (2.10) and (2.11) we arrive at

U = 1
2
(Vn1 + Vn2), Q = 1

2
(h1 + h2) (Vn1 − Vn2). (2.12a, b)

The shape of the discontinuity front can be defined in parametric form as

x = XB(ξ, t), (2.13)

where x is the radius vector, t is the time and ξ is a position parameter. It can be
shown that the line defined as

∂XB(ξ, t)

∂t
=
V 1(XB, t) + V 2(XB, t)

2
(2.14)
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Figure 3. Sketch of the formation of the upward jet from the kinematic discontinuity.

moves normal to the discontinuity with the velocity U given in (2.12a). Equation
(2.14) is the differential equation of the motion of the kinematic discontinuity, which
can be integrated for given velocity fields V 1(x, t) and V 2(x, t).

2.3. Liquid jet formed at the kinematic discontinuity

If the strength of the sink Q determined in equation (2.12b) is positive, the interaction
of two liquid flows on the wall results in an upward liquid jet at the kinematic
discontinuity, as shown in figure 3.

A similar geometry of the splash was considered in Peregrine (1981). In that work a
steady-state, one-dimensional model of the splash is developed. In the present model
of the jetting, the general case is analysed, when the components of the film velocity
parallel to the kinematic discontinuity do not vanish. Moreover, the surface tension
effects are taken into account in the momentum equation.

Consider the Cartesian coordinate system {e′n, e′τ, e′z} moving the discontinuity front
with velocity

V cs = Ue′n +
Vτ1 + Vτ2

2
e′τ. (2.15)

Here the base unit vectors e′n and e′τ are normal and tangent to the kinematic
discontinuity, and the base unit vector e′z is normal to the wall. The velocity U,
defined in (2.12a), is the velocity of propagation of the discontinuity in the normal,
e′n, direction, and Vτ1 and Vτ2 are the tangential components of the velocity of the
liquid in the films with thicknesses h1 and h2, respectively.

The velocities of the liquid on the wall from the two sides of the discontinuity in
this coordinate system are

V rel
1 =

Vn1 − Vn2
2

e′n +
Vτ1 − Vτ2

2
e′τ = −V rel

2 . (2.16)

Denote by α the angle of inclination of the jet to the wall in the coordinate system
{e′n, e′τ, e′z}. Thus, the unit vector eJ in the direction of the upward jet can be defined
as

eJ = e′n cos α+ e′z sin α. (2.17)
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Assuming the pressure to be constant, neglecting the rate of the mass change
accumulated inside the kinematic discontinuity and the inertial effects of this mass,
the mass balance, the axial momentum balance in the normal and tangential directions,
and the Bernoulli equation at the base of the crown can be written in the following
form:

−h1V
rel
1 · e′n + hBV

rel
B · eJ + h2V

rel
2 · e′n = 0, (2.18a)[−ρh1(V

rel
1 · e′n)V rel

1 + ρhB(V rel
B · eJ)V rel

B

+ρ h2(V
rel
2 · e′n)V rel

2

] · e′n = 2σ cos α, (2.18b)[−ρh1(V
rel
1 · e′n)V rel

1 + ρhB(V rel
B · eJ)V rel

B + ρh2(V
rel
2 · e′n)V rel

2

] · e′τ = 0, (2.18c)

V rel
1 · V rel

1 = V rel
B · V rel

B , (2.18d)

V rel
1 · V rel

1 = V rel
2 · V rel

2 , (2.18e)

where hB is the thickness of the crown at its base, α is the inclination angle at the
base, and V rel

B is the velocity of the liquid in the inclined jet at the base relative to the
coordinate system {e′n, e′τ, e′z}. The mass balance (2.18a) expresses the fact that the sum
of the volume fluxes of the fluid entering into the kinematic discontinuity must vanish.
The momentum equations (2.18b, c) express the balance of the inertial and surface
tension forces in the plane parallel to the wall. The Bernoulli equations (2.18d, e) use
the the fact that the pressure p0 in the films of thickness h1 and h2, as well as in the
crown outside the kinematic discontinuity, is equal to the constant pressure in the
surrounding air. Note that the choice of the coordinate system {e′n, e′τ, e′z} moving with
the velocity (2.15) was partially to satisfy condition (2.18e) automatically.

Note, also, that the upward jet appears at the kinematic discontinuity because the
pressure inside this discontinuity differs from p0. Moreover, the vertical reaction of
the wall per unit length of the discontinuity, Fp, associated with this pressure, can be
estimated using the momentum balance equation in the z-direction:

Fp = ρhB(V rel
B · eJ)(V rel

B · ez)− 2σ sin α.

Equations (2.18) are similar to the relations between the streams appearing due
to the splash derived in Peregrine (1981). However, the non-stationary inertial effects
are neglected in the analysis of Peregrine (1981) and, as a result, the theory predicts
the steady motion of the base of the crown. This result is not confirmed by the
experimental observations which can be expressed well by (1.1).

In the present analysis only the terms associated with the acceleration of the
kinematic discontinuity are neglected. The width and the height of this region are of
order of magnitude h, which is the characteristic thickness of the liquid on the wall.
The condition that the non-stationary terms inside the kinematic discontinuity can
be neglected is therefore

ρh (V rel)2 � ρh2 dVcs
dt

. (2.19)

The condition (2.19) applied to the case of the normal impact of a single drop
onto a stationary liquid film of the thickness hf yields, with the help of (1.1), the

condition h̄f/RB � 1. Therefore, the inertial effects of the liquid inside the kinematic
discontinuity can indeed be neglected in the remote asymptotic solution considered
in the present work.

The velocity vector V rel
B must be parallel to the jet. This means that this velocity
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can be written in the form

V rel
B = V rel

JB eJ + V rel
τB e

′
τ,

where the unit vector eJ is defined in (2.17). The solution of the system of equations
(2.18a–d ) with the help of (2.16) yields the following expressions for the velocity of
the liquid in the jet at the base of the crown, its thickness and the inclination angle
in the moving coordinate system {e′n, e′τ, e′z}:

V rel
τB =

h1 − h2

h1 + h2

V rel
τ1 , (2.20a)

V rel
JB =

[
(V rel

n1 )2 +
4h1h2

(h1 + h2)2
(V rel

τ1 )2

]1/2

, (2.20b)

hB =
(h1 + h2)V

rel
n1

V rel
JB

, (2.20c)

cos α =
(h1 − h2)(V

rel
n1 )2

(h1 + h2) V
rel
n1 V rel

JB − 2σ/ρ
. (2.20d)

The final expressions for the velocity of the jet at the base in the laboratory
coordinate system {en, eτ, ez} and its thickness are obtained using (2.12), (2.15) and
(2.20a):

V B =
V 1h1 + V 2h2

h1 + h2

+
2σ

ρQ
cos α en +

S

2(h1 + h2)
sin α ez, (2.21a)

hB =
(h1 + h2)

2 (Vn1 − Vn2)
S

, (2.21b)

where the function S and the angle α are defined as

S =
√

(h1 + h2)2(Vn1 − Vn2)2 + 4h1h2(Vτ1 − Vτ2)2, (2.22a)

α = arccos

[
(h1 − h2) (Vn1 − Vn2)2

(Vn1 − Vn2) S − 8σ/ρ

]
, (2.22b)

and Q is determined in (2.12).
The absolute value of the argument of the cosine function in the right-hand side of

equation (2.22b) should be smaller than unity. Otherwise, a solution for α does not
exist and the crown is not formed. It can be shown that a solution for the angle α
always exists in the asymptotic case σ = 0. Consider for simplicity case σ > 0 for the
example of axisymmetric geometry of the impact (Vτ1 = Vτ2 = 0). Equations (2.21b)
and (2.22b) can be reduced to the form

hB = h1 + h2, α = arccos

[
(h1 − h2)(Vn1 − Vn2)2

hB(Vn1 − Vn2)2 − 8σ/ρ

]
,

and the necessary condition for formation of the crown is 8σ/ρ < min(h1, h2)
(Vn1−Vn2)2. This condition is not satisfied after an impact with a low Weber number.
In this case, the inertial forces are weak in comparison with the surface tension
forces, preventing creation of the crown. In the present paper only impacts with high
Weber numbers are considered, when the inertia plays a dominant role in the force
balance.
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Expressions (2.21) together with the position of the crown base XB obtained
by integration of (2.14) can be used as initial conditions for the determination of
the shape of the jet. The dynamic equations of propagation of the jet are given
below.

2.4. Surface of the crown and its thickness

The surface of the jet is assumed to be thin. The radius vector corresponding to the
median surface of the jet (see figure 2) can be defined in the Lagrangian form for any
instant in time t as X J(ξ, tB, t), where ξ is a position parameter, tB is the time instant
at which the material point located at X J is ejected from the wall (at the base of the
crown) such that

X J(ξ, tB, tB) = XB(ξ, tB). (2.23)

Parameter ξ is associated with the position of the given material point along the
front of the kinematic discontinuity XB .

The equation of motion of the material point of the jet is in its general form

ρ hJ ∂AJ
∂2

∂t2
X J(ξ, tB, t) = ∂T , (2.24)

where hJ is the local thickness of the jet, ∂AJ is the element of the jet surface, ∂T is
the total force applied to that element of the jet, including in general the capillary,
viscous, body forces and the gas drag force. The details of the force ∂T applied to
the element of a free-moving sheet, as well as the quasi-two-dimensional equations of
the motion of the free liquid film can be found in Yarin (1993).

The effect of the surface tension consists of the capillary pressure in the film
and the δ-functional surface tension force acting at the two free surfaces bounding
the considered element of the area ∂AJ . The effect of the capillary pressure can be
neglected in a free thin film. The δ-functional surface tension force at each free
side of the jet can be substituted by a resulting force σκ∂AJnJ , where κ is the local
curvature of the jet and nJ is the unit normal vector directed towards the centre of
curvature.

In the present analysis the effect of viscosity is neglected and the momentum
balance equation of the upward jet takes the form

∂2

∂t2
X J(ξ, tB, t) =

2σκ

ρhJ
nJ − gez, (2.25)

where g is the acceleration due to gravity.
Consider now the thickness hJ(ξ, tB, t) of the jet. Conservation of mass of the

element of the crown yields

hB(ξ, tB) ∂AJ(ξ, tB, tB) = hJ(ξ, tB, t) ∂AJ(ξ, tB, t), (2.26)

where the element of the area of the jet, ∂AJ , can be defined as

∂AJ =

∣∣∣∣∂X J

∂ξ
× ∂X J

∂tB

∣∣∣∣ ∂ξ ∂tB. (2.27)

Equations (2.26) and (2.27) yield the following expression for the thickness of the
jet:

hJ(ξ, tB, t) = hB(ξ, tB)
|(∂/∂ξ)X J(ξ, tB, t)× (∂/∂tB)X J(ξ, tB, t)||t=tB
|(∂/∂ξ)X J(ξ, tB, t)× (∂/∂tB)X J(ξ, tB, t)| . (2.28)
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Figure 4. Sketch of the rim instability and cusp formation.

In order to calculate the shape of the jet and its thickness, equation (2.25) must be
integrated with the help of (2.28) subject to the initial conditions at the base of the
crown:

t = tB : X J = XB(ξ, tB),
∂X J

∂t
= V B(ξ, tB), hJ = hB(ξ, tB). (2.29)

2.5. Free rim bounding the jet

The jet is bounded by the free rim (see figure 2) whose location is denoted here as
XR . The formation of a rim at the edge of a liquid film is a typical phenomenon first
described theoretically by Taylor (1959) for a free liquid film of uniform thickness
and constant velocity. The mass balance and momentum balance equations of the
stationary rim for an arbitrary velocity field in the film can be also found in Yarin
(1993). However, if the mass of the rim is small, the inertial effects associated with the
acceleration of the rim and the flow inside the rim can be neglected. Also, if the radius
of the curvature of the centreline of the rim is much larger than the characteristic
size of its cross-section, the velocity of the rim relative to the liquid in the film can
be approximated well by the expression obtained by Taylor (1959):

UR =

√
2σ

ρ hR
, (2.30)

where hR is the film thickness near the rim.
In the study of Yarin & Weiss (1995) the loss of the rim stability and formation of

jets is explained by a cusp formation. Consider small perturbations Y (x, t) of the rim
centreline (figure 4). The velocity of the rim propagation relative to a free liquid film
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is given by (2.30). The height of the rim can be thus described by

∂Y

∂t
= −UR

√
1 +

(
∂Y

∂x

)2

. (2.31)

Equation (2.31) is the eikonal equation which has an analytical solution obtained
in Whitham (1974, pp. 241–243) using the integration of the equation along the
characteristic curves. Moreover, it was shown that these curves, characteristic for
the equation (2.31), are actually straight lines normal to the initial shape of the rim
centreline. Denote X 0 = x ex+Y0(x) ey as the initial shape of the rim. Its position at the
time instant t can be expressed in the parametric form X (x0, t) = x(x0, t) ex+Y (x0, t) ey
with

x(x0, t) = x0

[
Y ′0 (x0)Urt√
1 + Y ′20 (x0)

+ 1

]
, (2.32a)

Y (x0, t) = Y0(x0)− Urt√
1 + Y ′20 (x0)

, (2.32b)

where the parameter x0 represents the initial position of the point considered along
the characteristic line, and the prime in Y ′0 (x0) denotes the derivative with respect to
x0.

Consider now the radius of curvature R(x0) of the rim centreline X (x0, t):

R(x0, t) = − [x′2(x0, t) + Y ′2(x0, t)]
3/2

x′(x0, t)Y ′′(x0, t)− x′′(x0, t)Y ′(x0, t)
. (2.33)

The prime in (2.33) denotes the partial derivative with respect to x0. The sign in (2.33)
is chosen such that the radius R at the points where the rim is concave outward is
positive (equal to the radius R2 defined in figure 4).

Substituting the expressions (2.32) for the coordinates of the rim into (2.33) yields
the following expression for the radius of curvature:

R(x0, t) = R0(x0)−Urt, (2.34)

where R0(x0) = R(x0, 0) is the initial curvature radius of the rim centreline.
Therefore, if the initial radius of curvature is negative (radius R1 in figure 4), its

absolute value increases with time. If the initial radius of curvature is positive (radius
R2 in figure 4), its absolute value decreases and vanishes at some time instant t∗. The
instant t∗ when the radius of curvature R2 vanishes corresponds to the cusp formation
and the beginning of the jetting and splash. The time instant t∗ can be estimated as

t∗ = R0

√
ρhJ/σ.

At times larger than t∗ the liquid flows from the rim to jets, which then break up
into secondary droplets. The radius of the cross-section of the rim does not grow
significantly and the inertial effects associated with the mass of the rim per unit length
can be neglected. This means that even after the time instant t∗ the velocity of the
rim at point A in figure 4 can be approximated by equation (2.30).

2.6. Approximation for high We

Note that, if the impact velocity is so high that surface tension effects are negligibly
small in comparison to the inertial effects, in other words, if the Weber number is
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sufficiently larger than unity, the expression (2.21a) for the velocity V B of the ejected
liquid at the kinematic discontinuity can be reduced to the following form:

V B =
V 1h1 + V 2h2

h1 + h2

+ |V 1 − V 2|
√
h1 h2

h1 + h2

ez. (2.35)

The equation of motion of the jet can be reduced to the form

∂2

∂t2
X J(ξ, tB, t) = −g ez, (2.36)

the solution of which is

X J(ξ, tB, t) = XB(ξ, tB) + V B(ξ, tB) (t− tB)− g(t− tB)2

2
ez. (2.37)

3. Normal impact of a single drop on a wetted surface
Consider a liquid drop of diameter D0 impacting with the impact velocity U0 on a

stationary liquid film of constant thickness hf . If the impact velocity is high enough,
the initial deformation of the drop and of the film is followed by the formation of
a crown-like jet. The geometry considered is axisymmetric, therefore the base of the
crown is an expanding circle with the centre at the point of impact. The components
of the velocities in the film normal to the kinematic discontinuity are equal to the
radial velocities, and the tangential components vanish.

Consider the cylindrical coordinate system {r, φ, z} with base vectors {er, eφ, ez} and
the origin fixed at the point of impact. Assume that the impact velocity is so high
that the viscous and surface tension effects are negligibly small in comparison to the
inertia of the liquid. The theory of Yarin & Weiss (1995) describes the velocity inside
the kinematic discontinuity and the thickness of the film at times sufficiently larger
than D0/U0 in the dimensionless form (1.1a, b), whereas the film of the thickness hf
outside the kinematic discontinuity remains undisturbed. It can be shown that the
solution of (2.14) in this case yields the radius of the kinematic discontinuity in the
form of (1.1c). The velocity and thickness of the jet at the kinematic discontinuity
can be obtained in dimensionless form by substituting (1.1) into (2.35) and (2.21ab)
and neglecting the terms associated with the surface tension:

V B(t) =
β η1/2

(t+ τ)1/2 [η + hf (t+ τ)2]
(η1/2 er + h

1/2
f (t+ τ) ez), (3.1a)

hB(t) =
η

(t+ τ)2
+ hf. (3.1b)

Here the drop diameter D0 is used as a length scale, the impact velocity U0 as a
velocity scale, and D0/U0 as a time scale. From here on the overbar denoting a
dimensionless variable is dropped.

In the right-hand side of the equation of motion of the crown (2.21) only gravity
effects are taken into account. In this case an analytic solution for the shape of the
crown is derived in the form

X J(tB, t) = β(tB + τ)1/2

[
1 +

η

(tB + τ) [η + hf (tB + τ)2]
(t− tB)

]
er

+β(tB + τ)1/2
η1/2 h

1/2
f

η + hf(tB + τ)2
(t− tB)ez − Fr−1

2
(t− tB)2 ez, (3.2)
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where the Froude number is defined as

Fr =
U2

0

g D0

.

The solution for the thickness of the crown is obtained by substituting (3.2) in
(2.28), taking the azimuthal angle φ as parameter ξ and accounting for the axial
symmetry of the problem:

hJ(tB, t) = hB(tB)
RB(tB)

RJ(tB, t)

√
G2

1 (tB, tB) + G2
2 (tB, tB)√

G2
1 (tB, t) + G2

2 (tB, t)
, (3.3)

where the radius of the crown and the functions G1 and G2 are defined as

RJ(tB, t) = β (tB + τ)1/2

[
1 +

η

(tB + τ)[η + hf(tB + τ)2]
(t− tB)

]
, (3.4a)

G1(tB, t) =
1

2(τ+ tB)3/2

[
τ+ tB +

4(t− tB)η2

[η + hf(tB + τ)2]2
+
η(3tB − 5t− 2τ)

η + hf(tB + τ)2

]
(3.4b)

and

G2(tB, t) =
(t− tB)

AFr
+

(ηhf)
1/2[hft

3
B − (3tB + 2τ)(η + hfτ

2) + t(η − 3hf(tB + τ)2)]

2(τ+ tB)1/2 [η + hf(τ+ tB)2]2
.

(3.4c)

Consider now the rim bounding the crown and defining its height. We assume the
centreline of the rim to be a circle defined as x = XR(t). The rim belongs to the
crown, therefore the rim location can be expressed in the form

XR(t) = X J(tR, t), (3.5)

where parameter tR is a function of time t. Expression (3.5) also means that a material
point located at the time instant tR at the kinematic discontinuity reaches the rim at
the instant t. Denote WR as the total volume of liquid ejected from the film to the jet
at the kinematic discontinuity in the time interval from zero to tR:

WR(tR) = 2π

∫ tR

0

RB(t)Q(t) dt. (3.6)

Using the mass balance, at time instant t this entire volume WR(tR) is accumulated
in the rim or ejected from the rim to the jets and to the secondary droplets. If we
assume that the rim moves with the velocity (2.30) relative to the liquid in the crown,
the total volume flux can be obtained as

dWR

dt
= 2πRR(t)hR(t)UR(t), (3.7)

where RR is the dimensionless radius of the centreline of the rim.
On the other hand, differentiating (3.6) with respect to tR yields

dWR

dtR
= 2πRB(tR)Q(tR). (3.8)

Equations (3.7) and (3.8) lead to the following differential equation for the time tR:

dtR(t)

dt
=
RR(t)hR(t)UR(t)

RB(tR)Q(tR)
. (3.9)
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Equation (3.5), using (1.1), (2.14) and (2.30), yields

dtR(t)

dt
=

√
8

We

RR(t)h
1/2
R (t)

β2hB(tR)
, (3.10)

where the radius of the centreline of the rim and the thickness of the jet at the rim
are defined as

RR(t) = X J(tR, t) · er,
hR(t) = hJ(tR, t),

respectively.

4. Non-axisymmetric cases
4.1. Oblique impact of a single drop

In this section the theory described in § 2 is applied to the case of impact of a single
drop on a uniform film moving with the constant velocity V τ. The impact velocity
U 0 is directed normal to the wall. The initial diameter of the drop is denoted D0.
The impact angle θ is defined here as tan θ = Vτ/U0 = Vτ. The axisymmetric case
considered in § 3 corresponds to an angle of zero.

Consider the Cartesian coordinate system {x, y, z} with the base vectors {ex, ey, ez}
fixed at the point of impact, axis x is directed opposite to V τ, axis z is normal to the
wall. The velocity V l in the lamella inside the crown (1.1a), which is assumed to be
uninfluenced by the outer flow, and the velocity V f in the outer undisturbed film are
written in this coordinate system in dimensionless form as

V l =
1

t+ τ
(xex + yey), (4.1a)

V f = −Vτ ex, (4.1b)

where, as in § 3, D0 is used as a length scale and U0 is used as a velocity scale. Here
and below the overbar denoting a dimensionless variable is dropped.

The thickness hl of the inner film is expressed in the form (1.1b), whereas the
thickness hf of the outer film is constant.

The solution of the equation of propagation of the base of the crown (2.14) can be
obtained with the help of (4.1) and (1.1b) in the form

XB = [−Vτ(t+ τ) + C1

√
t+ τ] ex + C2

√
t+ τ ey, (4.2)

where C1 and C2 are integration constants which must be found from the initial
conditions.

Assuming an elliptical initial shape of the kinematic discontinuity just after the
initial deformation of the drop, at the time of order t ≈ 1, the solution (4.2) yields
the shape of the kinematic discontinuity in the following parametric form:

XB(ϕ, t) =

[
βx cosϕ

√
t+ τ− Vτ(t+ τ) + Vτ

√
1 + τ

√
t+ τ+ x0

√
t+ τ√
1 + τ

]
ex

+βy sinϕ
√
t+ τ ey, (4.3)

where ϕ ∈ [−π, π] is the circumferential parameter, x0 is the displacement of the
centre of the initial ellipse at the instant t ≈ 1; βx > 0, βy > 0 and τ are non-
dimensional constants. It is interesting that the shape of the kinematic discontinuity
(4.3) remains elliptic. The half-axes of the ellipse are βx

√
1 + τ and βy

√
1 + τ, and the

ratio between these two half-axes is constant: γ = βy/βx.
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The unit vector n normal to the ellipse XB is now expressed in the form

n =
γ cosϕ ex + sinϕ ey√
γ2 cos2 ϕ+ sin2 ϕ

. (4.4)

Therefore the strength of the sink Q can be obtained in dimensionless form using
(2.12), (4.1), (4.3) and (4.4) as

Q =
(h1 + h2) (βx + B cosϕ) γ

2
√
t+ τ

√
γ2 cos2 ϕ+ sin2 ϕ

, (4.5a)

where

B = Vτ
√

1 + τ+
x0√
1 + τ

. (4.5b)

Note that the flux Q, defined in (4.5), is positive everywhere on the kinematic
discontinuity only if βx > B. In this case the base of the crown is a closed ellipse
expressed by (4.3). Otherwise, the jet is formed only on the part of the ellipse
corresponding to ϕ ∈ [−ϕ∗, ϕ∗] where

ϕ∗ = arccos(−βx/B). (4.6)

The velocity of the jet at the kinematic discontinuity is approximated using (2.35)
by

V B(ϕ, t) =
hl XB(ϕ, t)

(hl + hf)(t+ τ)
− hfVτ

hl + hf
ex +

√
hlhf

√
(β cosϕ+ B)2 + γ2β2 sin2 ϕ

(hl + hf)
√
t+ τ

ez.

(4.7)
The crown in the case of oblique impact is a three-dimensional expanding surface.

It can be given in parametric form using (4.3), (4.7), and the parameter ϕ instead of
ξ in (2.37).

In the present analysis we do not consider the motion of the rim, which in the case
of oblique impact is a complex three-dimensional curve. Nevertheless, the shape of
the crown obtained can be used as an asymptotic shape for the case We→∞.

4.2. Interaction of two crowns

Consider two drops of diameter D1 and D2 = kd D1 impacting normally onto a wetted
wall with the impact velocities U1 and U2 = ku U1. The constant thickness of the film
before impact is hf and its velocity is V f = 0.

Consider also a Cartesian coordinate system {x, y} in the plane of the wall with
the base vectors {ex, ey}. The first drop impacts at the origin of the coordinate system
(0, 0), the second at point (∆x, 0). Denote ∆t as the time interval between impacts.
Each impacting drop disturbs the film on the wall and produces a spot with radially
expanding flow. This flow is analysed in the theory of Yarin & Weiss (1995) and is
defined in (1.1). In our coordinate system the velocities V 1 and V 2, the thicknesses
h1 and h2 of the film in these spots, as well as the crown radii RB1 and RB2 can be
written in the dimensionless form

V 1 =
x ex + y ey
t+ τ1

, V 2 =
(x− ∆x) ex + y ey

t+ τ2

, (4.8a, b)

h1 =
η1

(t+ τ1)2
, h2 =

η2

(t+ τ2)2
, (4.8c, d )

RB1 = β1 (t+ τ1)
1/2, RB2 = β2 (t+ τ2)

1/2, (4.8e, f )
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where D1 is used as a scale for the length and U1 as a scale for the velocity. Note
that the non-dimensional parameters β1, τ1 and η1 are in general functions of the
Reynolds number, Re1 = ρ U1 D1/µ, Weber number, We1 = ρ U2

1 D1/σ, and the
dimensionless film thickness hf:

β1 = β(Re1,We1, hf), τ1 = τ(Re1,We1, hf), η1 = η(Re1,We1, hf),

whereas the parameters β2, τ2 and η2 are defined as

β2 =
√
ku kd β(Re2,We2, hf/kd), τ2 =

ku

kd
τ(Re2,We2, hf/kd)− ∆t, (4.9a, b)

η2 =
k3
d

ku
η(Re2,We2, hf/kd), (4.9c)

with Re2 = ρ U2 D2/µ and We2 = ρ U2
2 D2/σ. Functions β, τ and η correspond to

single drop impact.
The initial instant t0 of intersection of the bases of the two crowns can be found

from the condition

RB1 + RB2 = ∆x,

which with the help of (4.8e, f ) yields

t0 =
(β2

1 + β2
2 )∆x2 − β4

1τ1 − β4
2τ2 + β2

1β
2
2 (τ1 + τ2)

(β2
1 − β2

2 )2
− 2β1β2∆x

√
∆x2 − (β2

1 − β2
2 )(τ1 − τ2)

(β2
1 − β2

2 )2

if β1 6= β2, or

t0 =
∆x4 + β4

1 (τ1 − τ2)
2 − 2β2

1∆x2(τ1 + τ2)

4β2
1∆x2

otherwise.
After intersection, each crown has a circular part of radius RB1 and RB2 and the

common curve defined as x = XB . Denote (Xi, Yi) the coordinates of the point of
the intersection of the circular parts of the crowns at the time instant ti > t0 (see
also the definition of the point X i in figure 10 in § 5). These coordinates can be found
from the geometrical conditions

X2
i + Y 2

i = R2
B1, (4.10a)

(∆x−Xi)
2 + Y 2

i = R2
B2. (4.10b)

The solution of the system (4.10) is

Xi(ti) =
R2
B1(ti)− R2

B2(ti) + ∆x2

2∆x
, (4.11a)

Yi(ti) =

√
R2
B1(ti)−X2

i (ti). (4.11b)

At time t > ti the material point located at the time instant ti at (Xi, Yi) belongs
to the interface between two crowns. Equation (2.14) solved with the help of (4.8)
subject to the initial conditions

t = ti : XB(t, ti) = X i(ti)

yields the following expression for the shape XB(t, ti) of the interface given in para-
metric form:

YB(t, ti) =

√
t+ τ1

√
t+ τ2√

ti + τ1

√
ti + τ2

Yi(ti), (4.12a)
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and

XB(t, ti) =
√
t+ τ1

√
t+ τ2

[
Xi(ti)√

ti + τ1

√
ti + τ2

+
∆x

τ1 − τ2

(√
t+ τ1√
t+ τ2

−
√
ti + τ1√
ti + τ2

)]
(4.12b)

with the parameter ti ∈ [t0, t].
In the case τ1 = τ2 the solution of (2.14) takes the form

XB =

(
Xi(ti)

t+ τ1

ti + τ1

− ∆x

2

t− ti
ti + τ1

)
ex + Yi(ti)

t+ τ1

ti + τ1

ey. (4.13)

Now the analytical expressions for the velocity V B of the upward jet at the interface
XB , and the shape X J of the jet can be determined by substituting (4.8) and (4.12) or
(4.13) in (2.35) and (2.37), respectively.

5. Results and discussion
As in the model of Yarin & Weiss (1995) we also consider the initial phase of drop

deformation when it becomes a disc of radius R0 and thickness hf . The duration of
this first period is of order t ≈ 1. Neglecting the momentum loss of the liquid during
the drop deformation, invoking the mass balance of the drop, and considering the
initial conditions at t = 1 yields the following expressions for the parameters of the
problem:

β =

(
3hf
2

)−1/4

, τ =
1√
24hf

− 1, η =
1

24
(5.1)

(hf being the dimensionless initial thickness of the film).
The results of computations of the dimensionless height of the rim, ZR = XR(t) · ez ,

are shown in figure 5 for four different Weber numbers. The dimensionless film
thickness is hf = 0.29. The results of theoretical predictions are compared with
experimental data from . The agreement is quite good.

The analytical shapes of the crown are shown in figure 6 at different time instants.
The median surface of the crown X J , is defined by (3.2). The outer and inner surfaces
of the crown are at distances ±hJ/2 from the median surface, where the local jet
thickness hJ is defined in (3.3). These two surfaces are reconstructed beginning from
the point corresponding to X J = XB , z = 0. The smooth connection of these inner
and outer surfaces of the crown with the free surface of the film on the wall are not
considered in the present work. The predicted shape of the crown is nearly cylindrical,
similar to the crowns observed in Cossali et al. (1997) or shown in figure 1.

Note that this shape is obtained by neglecting surface tension and viscosity effects.
However, the resulting forces applied to the element of the surface of a free film
associated with surface tension are directed normal to the film. Considering the near-
cylindrical shape of the crown, the curvature of the crown is of order κ ∼ 1/RB . The
thickness of the crown is of order hJ ∼ hf . Therefore, the term on the right-hand
side of the momentum equation associated with the surface tension and neglected in
equation (2.25) can be estimated in dimensionless form as 2 (hfWeRB)−1. Therefore
the deviation ∆RB of the crown radius due to surface tension can be estimated
as ∆RB ∼ 2 (hf WeRB)−1 ∆t where ∆t is the time that a material point spends in
the crown. This time is estimated as the ratio of the crown height to the vertical
component of the jet velocity determined in (2.35). Using equations (1.1) and (5.1)
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Figure 5. The height of the crown. Comparison of the theory with the experimental data Cossali
et al. (1999), h̄f = 0.29: (a) We = 297, (b) We = 484, (c) We = 667, (d ) We = 842.
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Figure 6. Predicted shape of the crown at different instants after drop impact. h̄f = 0.29,
We = 842, Fr−1 = 0. Time instants are: t̄ = 5, 10, 20 and 30.

leads to

∆RB
RB
∼ Z2

r

We
.

Note also that the formation of the crown and splash takes place in the case of
high Weber number, when the surface tension effect is small. Specifically, in the cases
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shown in figure 5, the Weber numbers range from 297 to 842, whereas the height of
the crown is of order Zr ∼ 1. Therefore, the error ∆RB/RB due to surface tension in
the cases considered is negligibly small.

The shape (3.2) of the crown is obtained using an assumption of a simple ballistic
trajectory for liquid particles – the same principle used in Peregrine (1981). However,
the present results are very different from those obtained in Peregrine (1981). The first
main difference is in the use of the square-root time dependence (1.1) of the radius RB
and not a linear dependence as predicted in Peregrine (1981). Second, the prediction
of the thickness of the crown is added, which allows a description of the propagation
of the rim at the edge of the crown.

The shape of the base of the crown in the case of oblique impact at long times
t� 1 is predicted in (4.3). This shape is an ellipse with constant ratio of the half-axes
γ. We can only speculate about the value of γ in the absence of experimental data.
However, extrapolating the assumption of constant γ also into the time interval t < 1
and noting that the initial shape of the drop is spherical and thus the initial spot
which is created on the wall is circular, we conclude that the value of γ must be close
to unity. Therefore, βx ≈ βy = β, and the shape of the kinematic discontinuity is a
circle of radius β

√
t+ τ.

The initial displacement x0 of the centre of the circle at the instant t ≈ 1 is assumed
to be small and is neglected. This assumption together with the assumed circular
shape of the initial spot means that the influence of the outer flow V τ on the film
during the short first phase (t < 1) of the impact is assumed to be negligibly small.
Therefore, the parameters β, τ and η are the same as in the normal impact of a single
drop and are determined in (5.1).

It is more convenient to present the results on oblique impact in the coordinate
system moving with the outer film with the velocity −Vτex. This coordinate system
corresponds to the oblique impact of a drop with the initial tangential velocity
Vτex onto a steady uniform film of the thickness hf . Following (4.3) and (5.1) the
x-coordinate xc of the centre of the circle and its radius RB are

xc = Vτ (
√

1 + τ
√
t+ τ− τ), RB =

(
3hf
2

)−1/4√
t+ τ,

and the angle ϕ∗ defined in (4.6) becomes

ϕ∗ = arccos(−2/Vτ).

Therefore, the minimal obliquity angle θ∗ between the drop velocity vector and the
normal to the wall, at which the base of the crown is no longer a closed circle, can
be estimated as θ∗ = arctan(2) ≈ 63.4◦.

The predicted shapes of the base of the crown are shown in figure 7 for three
different values of the dimensionless tangential velocity Vτ of the drop. The base of
the crown is shown only at points where the source term Q defined in (4.5) is positive,
meaning that at these points an inclined jet is produced. It is shown that if the impact
angle θ is not zero (θ = π/4 on figure 7b), the shape of the crown can be represented
as a moving, expanding circle. If the impact angle is smaller than some critical value
(θ = arctan(3) ≈ 1.249 in figure 7c), the shape of the base of the crown is no longer
a closed curve. A similar behaviour of the crown after an oblique drop impact was
observed in the experimental study of Lavergne & Platet (2000). The shapes of the
crowns predicted using (4.3) and (4.7) in (2.37) are shown in figures 8 and 9 for two
different obliquity angles: θ = π/4 < θ∗ (figure 8), and θ = arctan(3) > θ∗ (figure 9).
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Figure 7. Shape of the base of the crown in the case of an oblique impact at time instants: t̄ = 5,
10, 15. The dimensionless thickness of the film is h̄f = 0.29. (a) Normal impact, Vτ = 0, (b) Vτ = 1,

(c) Vτ = 2.
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Figure 8. Shape of the crown produced due to an oblique impact. h̄f = 0.29, Vτ = 1, We→∞.
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Figure 9. Shape of the crown produced due to an oblique impact. h̄f = 0.29, Vτ = 3, We→∞.

In the case of the impact of two drops of diameters D1 and D2 with impact velocities
U1 and U2, the parameters β1, τ1 and η1 are determined in (5.1). The parameters β2,
τ2 and η2 can be obtained using (5.1) in (4.9) in the form

β2 = k1/2
u k

3/4
d

(
3hf
2

)−1/4

, τ2 =
ku

kd

(
kd√
24hf

− 1

)
− ∆t, η2 =

k3
d

24 ku

(hf being the non-dimensional film thickness with the diameter D1 used as a length
scale).

The results of the theoretical predictions of the shape of the interface between
two crowns on the wall are shown in figures 10–12 at different times t after impact.
It should be noted that in the expression for the curve XB determined in (4.12) or
(4.13) and corresponding to this interface, the component of the velocity parallel to
the curve t is not considered. This component does not influence the shape of the
curve. However, in some cases it can lead to the extension of the theoretical line
beyond the space occupied by the crowns on the wall, which has no physical sense.
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Figure 10. Symmetric interaction of two drops. h̄f = 0.29, ∆x̄ = 5, ∆t̄ = 0, kd = 1, ku = 1.
The non-dimensional times t̄ after impact are: (a) 5, (b) 10, and (c) 15.
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Figure 11. Interaction of two drops of the same diameter and different impact velocity impacting
simultaneously. h̄f = 0.29, ∆x̄ = 5, ∆t̄ = 0, kd = 1, ku = 3. The non-dimensional times t̄ after impact
are: (a) 5, (b) 10, and (c) 15.
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Figure 12. Interaction of two drops of different diameter and impact velocity. h̄f = 0.29, ∆x̄ = 5,
∆t̄ = 3, kd = 2, ku = 0.8. The non-dimensional times t̄ after impact are: 5, 10, and 15.

In figures 10–12 only the part of the curve XB is shown which belongs to the discs of
radii RB1 and RB2.

In figure 10 the symmetric case is shown, when two drops of the same diameter
and the same impact velocity impact onto the film simultaneously. The grey discs
correspond to the inner fields of two crowns, and the white line is the interface
between these crowns. Due to symmetry, the interface XB is a straight line coinciding
with the symmetry axis.

The non-symmetric case, when the second drop has the same diameter as the first
one but a higher impact velocity, is shown in figure 11; this illustrates the simultaneous
impact of two drops. In figure 12 the case of the interaction of two crowns produced
by impacting drops of different initial diameters and impact velocities is shown. The
time interval between these two impacts is not zero.
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6. Conclusions

The equations for the shape of the kinematic discontinuities and for the velocity
vector and the thickness of the jet formed at this kinematic discontinuity are developed
for the general case of drop impact on wetted surface. The model for the crown shape
takes into account inertial effects and neglects surface tension and viscous forces in
the crown. Surface tension effects are accounted for in the description of the motion
of the free rim bounding the crown. The model is valid for the high-velocity impact of
a low viscosity liquid drop on a relatively thin liquid film. The theoretical prediction
for the height of the crown is compared with experimental data in the literature. The
results of the comparison are good, in spite of the fact that no adjustable parameters
are used. Some results for the shape of the base of the crown in the case of oblique
impact and interaction of two crowns are presented.

This research was partially supported by GIF – German–Israeli Foundation for
Scientific Research and Development, Research Grant No. I-536-097.14/97.
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